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Problem Setup

Quantitative group testing (QGT): Result of a test is
the number of defective items in the tested group.

Problem: Identify all defective items in a given pop-
ulation of N items for the following settings:

e Deterministic Model: There are exactly K de-
fective items for a given integer 1 < K < N

e Randomized Model: Each item Is defective
with probablllty , Independently from other
items, for a given mteger 1<K <N

Basic Notation:

e x ¢ {0,1": Non-zero values correspond to
the defective items, and zero values corre-
spond to the non-defective items

e Ac {0,1™N: The measurement matrix
o y=Axc {Z-o}": Test results vector

Design a testing matrix A that has a small number
of rows (tests), m, and can identity the defective
items given the test results y.

Connecting QGT & Coding Theory

t-separable matrix: A binary matrix is t-separable
over a field I if the sum of any set of ¢ columns
(over I) is distinct.

e |f a matrix with » columns is ¢-separable (for
some t < n) over a field IF, then it is also -
separable over [F forany 1 < i < .

ldea: Any t-separable matrix over any field [ can
be used as a measurement matrix for identifying ¢
or fewer defective items in the QGT problem.

Challenge: The construction of an optimal t-
separable matrix (with minimum number of rows)
for an arbitrary ¢ is an open problem.

A Near-Optimal Solution: Using a parity-check ma-
trix of a binary t¢-error correcting BCH code.

Proposed Algorithm: Encoding

Llet G = G, (N, M) be a randomly chosen bi-
regular (left-and-right regular) bipartite graph:
e N and M: number of the left and right nodes

e / and r: degree of the left and right nodes

Let Tg = [t],...,t],]" € {0,1}"*N be the adja-
cency matrix of G;

Let H = [h],...,h] o p)]T € {0, 1}{109:(+D)%" g

a parity-check matrix of a binary f-error correcting
(r,r —tlog,(r + 1)) BCH code;

Construct the signature matrix U S
[0, 1}{tlogr+1)+1)x" gnd  the measurement ma-
trix A € {0, 1 Mtlog:(r+1)+1)xN a5 follows:

Let U = [uy,up, -+ ,u,] where u; = [1,h']", and
let A=[A],--- A ]", where

A,'=[0,...,0,U1,0,...,U2,0,...,Ur]
whent =[0,...,0,1,0,...,1,0,...,1].

Proposed Algorithm: Decoding

A t-Resolvable Right Node: A right node that is
connected to f or fewer defective items.

Resolving a t-Resolvable Right Node:

e The observation vector corresponding to the
I-th right node:
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e z') is used to find the number of defective
items (j) connected to the /-th right node

o z (under modulo 2) is used by the BCH de-
Coder to locate the j errors (for 0 </ < 1)

lterative Peeling Decoding: In each iteration,
(1) Resolve all the t-resolvable right nodes

(i) Peel the edges connected to the recovered
defective items off the graph

(i) Terminate if A any f-resolvable right node

Example

Llet N=14and M =4,and let G = G>7(14,4) be a
bi-regular bipartite graph (¢ = 2 and r = 7) where

1 0
0 1

Te=101 0
100 0

First, we construct the matrices H and U by using
a binary t = 1-error correcting (7, 4) BCH code:

1 1

0 011 1
H= |0 1 1 U =
1 10

1
0
0
1

0 1
1 1
10 ]

Next, we construct the measurement matrix A as:

1070101010100
0000100010100
0010001010100
1000001000100
01 100101010710
0000010001010
0010000101010

A_ (0100000100010
010 01100110 0
000001000110 O
0007100100110 0
010000100010 O
100 001100 0
000 000100 0
000 001100 0
100 001000 0

Suppose the number of defective items is K = 3,
and the items 1, 4, and 10 are defective, I.e.,
=[1,0,0,1,0,0,0,0,0,1,0,0,0,0]". Then,

U/ Z;r_ 1 0 0 1

B B Us Z—Zr B 1110
y= Ax = Uo + Us |’ Zér 12120
ui+u| |z, (2011

e [he 1stand 2nd right nodes are 1-resolvable,
and using a BCH decoder, we find that the
items 1 and 10 are defective.

e Removing the contributions of the items 1
and 10, the 3rd and 4th right nodes become
1-resolvable, and using a BCH decoder, we
find that the item 4 is defective.

Main Theorem

For both the deterministic and randomized mod-
els of the defective items, the proposed algorithm
recovers all the defective items with probability
approaching one (as N and K grow unbounded)
with at most m = ¢( )K(tlog( )+ 1) + 1 tests,

where c(t) Is a constant that depends only on .

The following table lists the constant c(f) and
the optimal left degree ¢* for t<{1,2,---,6}:
1 3 4 5

c(t) | 1.222 . 0.388 | 0.294 | 0.239
* 3 2 2 2

Comparison Results

e The results of our theoretical analysis show
that when t € {1,2,3} the required number
of tests is less than that for larger values of t.

100::',' | —H—& §$——=% 7 D——

—
o

—
o
ro

—<— MLGT, L — oo,
—+— MLGT, L — oo,
MLGT, L — oo,
—+— MLGT, L — oo,
—s—t=1, (=3
t=2 0=2

o

It
NS S S
| T
ST N

Fraction of unidentified defective items

—a—t=3, {L=2

—
o
()

| | | | | | |
20 40 60 80 100 120 140 160

Number of tests per defective item (m/K)

o

Our simulation results also confirm that the
proposed algorithm (for t € {1,2,3}) sig-
nificantly outperforms the Multi-Level Group
Testing (MLGT) scheme of [2], which is one
of the best existing schemes for QGT.
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