User Localization in MmWave Cells: A Non-Adaptive Group Testing Approach based on Sparse Graph Co Anoosheh Heidarzadeh, Esmaeil Karimi, Fatemeh Kazemi, Krishna R. Narayana

Problem Setup

Quantitative group testing (QGT): Result of a test is the number of defective items in the tested group.

Problem: Identify all defective items in a given population of N items for the following settings:

- Deterministic Model: There are exactly K defective items for a given integer $1 \leq K \leq N$
- Randomized Model: Each item is defective with probability $\frac{K}{N}$, independently from other items, for a given integer $1 \leq K \leq N$.

Basic Notation:

- $\mathbf{x} \in \{0, 1\}^N$: Non-zero values correspond to the defective items, and zero values correspond to the non-defective items
- $A \in \{0, 1\}^{m \times N}$: The measurement matrix
- $\mathbf{y} = \mathbf{A}\mathbf{x} \in \{\mathbb{Z}_{>0}\}^m$: Test results vector

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \mathbf{y} = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}$$

Goal

Design a testing matrix A that has a small number of rows (tests), *m*, and can identify the defective items given the test results y.

Connecting QGT & Coding Theory

t-separable matrix: A binary matrix is t-separable over a field \mathbb{F} if the sum of any set of t columns (over \mathbb{F}) is distinct.

• If a matrix with *n* columns is *t*-separable (for some $t \leq n$) over a field \mathbb{F} , then it is also *i*separable over \mathbb{F} for any $1 \leq i \leq t$.

Idea: Any *t*-separable matrix over any field \mathbb{F} can be used as a measurement matrix for identifying t or fewer defective items in the QGT problem.

Challenge: The construction of an optimal tseparable matrix (with minimum number of rows) for an arbitrary t is an open problem.

A Near-Optimal Solution: Using a parity-check matrix of a binary *t*-error correcting BCH code.

Proposed Algorithm: Encoding

Let $G \triangleq G_{\ell,r}(N, M)$ be a randomly chosen biregular (left-and-right regular) bipartite graph:

- N and M: number of the left and right nodes
- ℓ and r: degree of the left and right nodes

Let $\mathbf{T}_G = [\mathbf{t}_1^{\mathsf{T}}, \dots, \mathbf{t}_M^{\mathsf{T}}]^{\mathsf{T}} \in \{0, 1\}^{M \times N}$ be the adjacency matrix of G;

Let $\mathbf{H} = [\mathbf{h}_1^T, \dots, \mathbf{h}_{t \log_2(r+1)}^T]^T \in \{0, 1\}^{(t \log_2(r+1)) \times r}$ be a parity-check matrix of a binary *t*-error correcting $(r, r - t \log_2(r + 1))$ BCH code;

Construct the signature matrix U $\{0,1\}^{(t \log_2(r+1)+1) \times r}$ and the measurement matrix $\mathbf{A} \in \{0, 1\}^{M(t \log_2(r+1)+1) \times N}$ as follows:

Let $\mathbf{U} = [\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_r]$ where $\mathbf{u}_i = [\mathbf{1}, \mathbf{h}_i^{\mathsf{T}}]^{\mathsf{T}}$, and let $\mathbf{A} = [\mathbf{A}_1^{\mathsf{T}}, \cdots, \mathbf{A}_M^{\mathsf{T}}]^{\mathsf{T}}$, where

 $A_i = [0, ..., 0, u_1, 0, ..., u_2, 0, ..., u_r]$

when $\mathbf{t}_i = [0, \ldots, 0, 1, 0, \ldots, 1, 0, \ldots, 1].$

Proposed Algorithm: Decoding

A *t-Resolvable* Right Node: A right node that is connected to *t* or fewer defective items.

Resolving a *t*-Resolvable Right Node:

• The observation vector corresponding to the *i*-th right node:

 $\mathbf{Z}_{i} = [Z_{i,1}, Z_{i,2}, \cdots, Z_{i,t \log(r+1)+1}]^{\mathsf{T}} = \mathbf{A}_{i}\mathbf{X}$

• Let $\mathbf{z}_i = [\mathbf{z}_i^{(1)}, \mathbf{z}_i^{(2)}]^T$, where $\mathbf{z}_i^{(1)} = z_{i,1}$ and $\mathbf{Z}_{i}^{(2)} = [Z_{i,2}, \cdots, Z_{i,t \log(r+1)+1}]^{\mathsf{T}}$:

 $\begin{bmatrix} \mathbf{z}_i^{(1)} \\ \mathbf{z}_i^{(2)} \end{bmatrix} = \begin{bmatrix} 0 & \dots & 0 & 1 & 0 & \dots & 1 & 0 & \dots & 1 \\ 0 & \dots & 0 & \mathbf{h}_1 & 0 & \dots & \mathbf{h}_2 & 0 & \dots & \mathbf{h}_r \end{bmatrix} \mathbf{x}$

- $\mathbf{z}_{i}^{(1)}$ is used to find the number of defective items (*j*) connected to the *i*-th right node
- $\mathbf{z}_{i}^{(2)}$ (under modulo 2) is used by the BCH decoder to locate the *j* errors (for $0 \le j \le t$)

Iterative Peeling Decoding: In each iteration,

- (i) Resolve all the *t*-resolvable right nodes
- (ii) Peel the edges connected to the recovered defective items off the graph
- Terminate if \exists any *t*-resolvable right node

Exa Let Λ bi-reg

First, a bina

H =

Next,

Supp and **X** = [

e Quantitative des an, and Alex Sprintson	ELECTRICAL & COMPUTER ENGINEERING TEXAS A&M UNIVERSITY
Imple	Main Theorem
$M = 14 \text{ and } M = 4, \text{ and let } G = G_{2,7}(14, 4) \text{ be a gular bipartite graph } (\ell = 2 \text{ and } r = 7) \text{ where}$ $G = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0$	For both the deterministic and randomized models of the defective items, the proposed algorithm recovers all the defective items with probability approaching one (as <i>N</i> and <i>K</i> grow unbounded) with at most $m = c(t)K(t\log(\frac{N\ell}{c(t)K} + 1) + 1) + 1$ tests, where $c(t)$ is a constant that depends only on <i>t</i> .
we construct the matrices <i>H</i> and <i>U</i> by using ary $t = 1$ -error correcting (7, 4) BCH code: $\begin{bmatrix} 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}, U = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$	The following table lists the constant $C(t)$ and the optimal left degree ℓ^* for $t \in \{1, 2, \dots, 6\}$: $\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Comparison Results
we construct the measurement matrix A as: $ \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0$	 The results of our theoretical analysis show that when t ∈ {1,2,3} the required number of tests is less than that for larger values of t. support to the test of the test of the test of te
pose the number of defective items is $K = 3$, the items 1, 4, and 10 are defective, i.e., $1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]^{T}$. Then,	proposed algorithm (for $t \in \{1, 2, 3\}$) significantly outperforms the Multi-Level Group Testing (MLGT) scheme of [2], which is one

$$\mathbf{v} = \mathbf{A}\mathbf{x} = \begin{bmatrix} \mathbf{u}_1 \\ \mathbf{u}_5 \\ \mathbf{u}_2 + \mathbf{u}_5 \\ \mathbf{u}_1 + \mathbf{u}_2 \end{bmatrix}, \begin{bmatrix} \mathbf{z}_1^{\mathsf{T}} \\ \mathbf{z}_2^{\mathsf{T}} \\ \mathbf{z}_3^{\mathsf{T}} \\ \mathbf{z}_4^{\mathsf{T}} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 2 & 1 & 2 & 0 \\ 2 & 0 & 1 & 1 \end{bmatrix}$$

• The 1st and 2nd right nodes are 1-resolvable, and using a BCH decoder, we find that the items 1 and 10 are defective.

 Removing the contributions of the items 1 and 10, the 3rd and 4th right nodes become 1-resolvable, and using a BCH decoder, we find that the item 4 is defective.

of the best existing schemes for QGT.

References

[1] E. Karimi, F. Kazemi, A. Heidarzadeh, and A. Sprintson "A Simple and Efficient Strategy for the Coin Weighing Problem with a Spring Scale," IEEE International Symposium on Information Theory (ISIT'18), 2018.

[2] P. Abdalla, A. Reisizadeh, R. Pedarsani, "Multilevel group testing via sparse-graph codes," 51st Asilomar Conference on Signals, Systems, and Computers, 2017.

[3] E. Karimi, F. Kazemi, A. Heidarzadeh, K. R. Narayanan and A. Sprintson "Sparse Graph Codes for Non-adaptive Quantitative Group Testing," Submitted to IEEE International Symposium on Information Theory (ISIT'19), 2019.